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O
ptions on the Chicago Board of
Trade’s Treasury bond futures
contracts were introduced in
October 1982, and have been

widely used since. Numerous valuation
models for fixed-income options like these
have been proposed but none has achieved
widespread acceptance among practitioners.
After surveying the academic literature, Hull
[1993, p. 409] opines that “Interest rate
options are more difficult to value than stock
options, currency options, index options,
and most futures options.” This is true
despite the increasing sophistication of inter-
est rate option valuation models.

Practitioners have devised their own
methods for predicting option prices. A study
of stock index option valuation models con-
cludes that some common, simple predictive
schemes, based on two-week-ahead extrapo-
lation of Black-Scholes model implied volatil-
ities, outperform several academic models (see
Jackwerth and Rubinstein [1996]).

This is not surprising, given the per-
sistent pattern of “moneyness bias.” That is,
implied volatilities are inversely related to the
exercise price (in other words, in-the-money
calls (or out-of-the-money puts) tend to be
underpriced relative to the other degrees of
moneyness) that plagues parametric valua-
tion models of stock index options, as docu-
mented by Bates [1996], Bakshi, Cao, and
Chen [1997], and countless practitioners.  

In what is perhaps the only systemat-

ic study of parametric valuation model per-
formance in pricing CBOT note and bond
futures options, Cakici, Chatterjee, and Wolf
[1993] examine the Black [1976] futures
options valuation model pricing perfor-
mance during 1987, and conclude that:

The in-the-money calls are under-
priced by the model. This underpric-
ing is most pronounced for the inter-
mediate maturity of $6 < T < 12,
where T is maturity in weeks. These
two results are comparable to Whaley
[1986]…. As for the model’s maturi-
ty bias, the underpricing of the short
maturity in-the-money calls seems to
be the only economically significant
mispricing [1993, p. 7].

Examination of the pricing error clas-
sification of Hull [1993, pp. 436-438] indi-
cates that in-the-money calls will be under-
priced by the Black model when the actual
risk-neutral distribution has a fatter left-hand
tail than the lognormal does. This pattern of
“moneyness bias,” equivalently stated as the
finding that implied volatilities are inversely
related to the exercise price over some range
and period of time, is the same as the pattern
often found in stock index options.

Rubinstein [1994] conjectures that
this implied volatility skew is due to market
participants’ fears of a serious stock market
crash, causing the a fatter left-hand tail of the
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underlying stock index distribution. Supporting evi-
dence for this is provided in Bates [1996] and in Cor-
rado and Su [1997]. It is thus possible that the Black
model mispricing of CBOT bond futures options is also
due to fear of another bond market crash — perhaps on
the order of the unprecedented high interest rates of the
early 1980s, or the more recent bear market in 1994. 

We develop a third way to predict option prices,
which combines the risk-neutral valuation framework
inherent in the formal option models with the flexibil-
ity of practitioner methods. First developed in Stutzer
[1996], the canonical valuation model is a simplified,
risk-neutral valuation method that permits the user to
specify an individual assessment of the distribution of
the underlying security price at option expiration.
Then, it uses this distribution to estimate risk-neutral
probabilities needed to value the option, as the risk-
lessly discounted, risk-neutral expected value of its
payoff at expiration. 

In Stutzer [1996] I use a simple histogram of past
stock index price relatives (i.e., gross returns) that
includes the Crash of 1987 to assess the distribution of
future stock index values at option expiration. I demon-
strate how the canonical model can avoid the pattern of
moneyness bias that plagues the parametric models. 

Here we show that the canonical model predicts
that in the historically typical range of bond futures
prices, the Black model implied volatility of in-the-
money calls should indeed be somewhat higher than of
other calls, and that this pattern will be more pro-
nounced for shorter term options, consistent with
empirical evidence. The canonical model also predicts
that the implied volatilities should generally be much
higher when the underlying futures price is near his-
toric lows (i.e., in regimes of relatively high long-term
bond rates), consistent with the empirical finding that
the level and the volatility of interest rates are directly
related. The common pattern of moneyness bias does
not plague the canonical model, which consequently
outperforms the Black model.

I. CANONICAL MODELING AND 
OPTION PRICING THEORY

Option pricing theory posits the existence of a
stochastic process for the underlying price movements,
which generates the actual probability distribution of
the underlying price at option expiration. To value the
option, the process is transformed via Girsanov’s theo-

rem (Dothan [1990, p. 209]) into a risk-neutral process
that generates a risk-neutral probability distribution for
the underlying price at expiration. A predicted option
price is the risklessly discounted, expected value of the
option’s payoff at expiration. Because neither the func-
tional form of the stochastic process nor its parameters
are ever known with certainty, neither the actual nor the
risk-neutral probabilities can be known with certainty.

To illustrate, consider the well-known Black
[1976] model for European futures options, which
Cakici, Chatterjee, and Wolf [1993] use in their com-
prehensive empirical study of CBOT note and bond
futures options valuation.1 Black assumes that the nature
of the stochastic process governing the underlying
futures price movements is such that the continuously
compounded growth rate of the futures price until
option expiration is normally distributed. Further, this
distribution of the futures price growth rate does not
vary with the current futures price. The risk-neutral
transformation results in a change of its mean, but not its
functional form. 

The result of the expected value calculation for
the predicted call option price Call can be written: 

Call = e–rT [FN(d1) – XN(d2)] (1)

where

d1 = [log(F/X) + 0.5s2T]/

d2 = d1 – 

r denotes the continuously compounded riskless dis-
count rate; T is the time to maturity in years; F is the
current underlying futures price; N is the cumulative
normal distribution function; X is the exercise price; and
s is the annualized underlying futures return volatility.

If there is misspecification of the underlying
stochastic process and/or use of the wrong process param-
eters in it, the Black model may misestimate the actual
probabilities of the underlying value at option expiration,
and hence misestimate the transformed risk-neutral prob-
abilities used to provide the Black model value in Equa-
tion (1). In other words, the Black model, as well as any
other parametric model, determines implicit estimates of
both actual and risk-neutral probabilities.

Canonical valuation by contrast allows the user to
specify a particular assessment about the actual distribu-
tion of the underlying at expiration, which provides the
basis for our estimate of the risk-neutral probabilities.  As

 s T
 s T
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a result, the futures price growth rate until option expi-
ration does not have to be normal, nor does it have to
have the same distribution for each possible current
futures price, as assumed in the Black model. 

We use the history of bond futures prices to
form a catalogue of histograms of futures price growth
rates (actually, price relatives), indexed by the current
futures price. In this way, non-normal distributions of
the futures price growth rate, which varies with the
current futures price, are determined, consistent with
past movements of the underlying bond futures price.

After all, it is unrealistic to think that the one-
month-ahead percentage changes in the futures price
will have the same distribution when the futures price is
110 (a fifteen-year, 8% bond yielding 6.9%) that it has
when the futures price is only 62 (bond yielding 14.2%).
In the latter case, one might expect the volatility of the
distribution to be higher, or, in the presence of mean
reversion, one might expect the futures price to be more
likely to rise than it would after starting from 110.2

II. ASSESSING THE DISTRIBUTION OF THE
UNDERLYING FUTURES PRICE

We obtain the entire series of daily closing prices
for the CBOT bond futures contracts through mid-
1996. For an option with time T to maturity and cur-
rent underlying futures price of F, the entire series is
searched for futures prices ±$8 from F. When one is
found, the same contract’s price at time T-ahead is
recorded (if the contract had not yet expired). The ratio
of the two prices is recorded as the price relative or
gross “return” . Each of these is multiplied by F to
form H possible values of the T-ahead futures price,
denoted Ph(T, F) = F . Assigning equal probability
to each produces a simple non-parametric estimate of
the T-ahead probability distribution of the futures
price, conditional on the current futures price F.3

Exhibit 1 lists the number H of observed N-
month-ahead (twenty-one trading days per month)
bond futures prices subsequent to observing a futures
price ±$8 from some specific values of F. Note that the
bulk of the observations are from historical periods
where the futures price was in the middle range
(between $86 and $102), corresponding to fifteen-year,
8% coupon bond yields between 7.8% and 9.8%. The
fewest observations are in the range of futures prices
seen most recently, i.e., ±$8 from 110.

Even the relative lack of data in this range does

Rh
F

Rh
F

not detract from the relative out-of-sample pricing per-
formance of the canonical model for options with six to
twelve weeks to expiration — the range where Cakici,
Chatterjee, and Wolf [1993] find the most serious Black
model mispricing. 

The N-month-ahead return distributions are
illustrated in the Exhibits 2-5, which are histograms (nor-
malized so that the area underneath them always equals
1) of the returns = Ph(T, F)/F, from the starting
futures prices F in Exhibit 1. Note that there is substan-
tial variation in the shapes of the distributions. The two
top panels of each graph illustrate the substantial skew-
ness of the returns distribution when the current futures
price is relatively low (i.e., bond yields are relatively
high). That is, the probability of unusually large, positive
increases in the futures price is higher when the starting
futures price is relatively low. There is also a greater
spread in the top panels than the lower panels, illustrating
the higher volatility associated with the returns in peri-
ods of low futures prices (high bond yields). These prop-
erties are totally absent in the Black model. 

III. TRANSFORMING ACTUAL PROBABILITIES
INTO RISK-NEUTRAL PROBABILITIES

The second step in canonical valuation is to esti-
mate risk-neutral probabilities satisfying a martingale
constraint, i.e. the risk neutral expected value of the
time T-ahead futures price must equal the current
futures price.4 The canonical risk-neutral probability dis-
tribution is the distribution satisfying this constraint that
is closest (in the sense of relative entropy) to the time T-
ahead distribution constructed as described. Because the
historical T-ahead futures prices are assigned equal (sub-
jective) probability, minimization of the relative entropy
is equivalent to maximization of the Shannon entropy,
making this method another application of the maxi-

Rh
F
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E X H I B I T 1
Number of Price-Relative “Returns” Rh, ±$8 from F

Price Expiration (months)
F 1 2 3 4

62 7,624 7,484 7,298 7,052
78 8,020 7,717 7,466 7,220
94 13,887 13,409 12,943 12,368

110 2,876 2,643 2,411 2,179
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E X H I B I T 2
Normalized Histogram for One-Month Return Data

E X H I B I T 3
Normalized Histogram for Two Months’ Return Data
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E X H I B I T 4
Normalized Histogram for Three Months’ Return Data

E X H I B I T 5
Normalized Histogram for Four Months’ Return Data
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mum entropy principle of distribution estimation.5

Specifically, for each combination of T and F,
the convex problem is solved: 

(2)

subject to . 

The constraint in (2) is a martingale constraint,
requiring that the current futures price $F$ equal the
risk-neutral probability p(h) weighted average (expec-
tation) of the T-ahead futures prices Ph(T, F). The max-
imand in (2) is the Shannon entropy of the risk-neutral
distribution. As shown in Stutzer [1996], the risk-neu-
tral probabilities solving (2) are an easily computed gen-
eralized exponential distribution called the canonical
probability distribution denoted (h), h = 1, …, H, in
what follows.6

The canonical model value of a call option
expiring at time T ahead with exercise price X is then
easily calculated to be:

(3)

where T denotes the time to expiration in years, and r
denotes an estimate of the riskless short interest rate
useful for this purpose. Puts could be valued by revers-
ing X and Ph(T, F) in (3).

IV. QUALITATIVE COMPARISON OF 
BLACK AND CANONICAL MODEL VALUES

To facilitate a qualitative comparison of Black
and canonical model values, we choose a value of r =
5% for the continuously compounded short interest
(i.e., discount) rate, and then convert each canonical
value (3) to the volatility s needed to make the Black
model value (1) equal to that canonical model value.7

We dub this the canonical volatility, in contrast to the
usual Black model implied volatility, which is the
volatility that makes the Black model value equal to
the market price.

The canonical volatility skews reported in
Exhibit 6 should predict historical patterns of Black
model implied volatilities, because the latter are merely

Call h P T F X eh
h

H
rT= -Â

=

-ˆ( )max[ ( , ) , ]p 0
1

 p̂

p( ) ( , )h P T F Fh
h

=Â

 
ˆ arg max ( ) log ( )

( )
p p p

p
= - Â

Â = =h h h

H
h h

1 1

another way of quoting previously reported prices.
Examination of Exhibit 6 quickly reveals that the canon-
ical volatilities are much higher when the underlying
futures price F is atypically low (around $62$), i.e., the
long-term bond yield is atypically high.  This is consis-
tent with empirical evidence showing a direct connec-
tion between the volatility and level of yields (see Sun-
daresan [1997, p. 50]). 

In the more typical range of futures prices, we see
that one-month in-the-money calls (X/F < 1) generally
have higher canonical volatilities than other calls. Com-
paring one-month options to four-month options, we
see that the model predicts that this pattern should be
less significant for the four-month options. Both these
canonical model predictions are consistent with the con-
clusions of Cakici, Chatterjee, and Wolf [1993].

V. OUT-OF-SAMPLE COMPARISON OF
BLACK AND CANONICAL MODEL VALUES
WITH MARKET PRICES

To compare the pricing performances, we choose
closing market prices of CBOT bond futures options on
twenty-one randomly selected days from August 1996
through January 1997.8 On each day, we select the near-
est-to-the-money option and those ±2 exercise prices
from it, with between 1 and 4 months to expiration. In
total, there are 105 of these out-of-sample options.9

In making the comparison between canonical
and Black model prices, it is important to remember that
the canonical model (2) and (3) does not use any option mar-
ket prices to predict other option market prices. It is therefore
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E X H I B I T 6
Canonical Volatilities: Qualitative Predictions of
Black Implied Volatility Skews

Exercise Price (X)/F
F 0.95 0.97 0.99 1.01 1.03 1.05

One-Month
62 0.131 0.139 0.144 0.145 0.146 0.149
94 0.116 0.103 0.094 0.094 0.096 0.105

110 0.10 0.10 0.102 0.095 0.089 0.085

Four Months
62 0.136 0.137 0.138 0.142 0.146 0.148
94 0.095 0.092 0.092 0.091 0.093 0.094

110 0.099 0.106 0.109 0.109 0.106 0.099 
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in the spirit of the original Black-Scholes model, which
is a theory that predicts option prices solely from infor-
mation about the underlying asset volatility and the
riskless discount rate. Subsequently, researchers have
found that using an option-implied volatility parameter
from, say, an at-the-money option improves the mod-
el’s ability to predict the prices of other options.

Thus, in order to ensure a comparison of two
theories that make use solely of information about the
underlying asset and discount rate, we cannot use the
Black model with an option-implied volatility. Instead,
on each day selected, the Black model is calibrated with
the historical volatility of the underlying futures price
between June 1996 and that day.10

Exhibit 7 is a scatterplot of the Black model’s
dollar pricing errors versus degree of moneyness X/F;
Exhibit 8 is the same scatterplot for the canonical
model. Focusing on the main concentration of points
in Exhibit 7, we see that there is an upward-sloping
trend to the Black model pricing errors, the most neg-
ative occurring for low values of X/F. That is, the
Black model has a tendency to relatively and absolute-
ly underprice in-the-money calls.  This pattern of mis-
pricing is consistent with the findings of Cakici, Chat-
terjee, and Wolf [1993], who show that the relative mis-
pricing of in-the-money calls persists even when using
the Black model with an option-implied volatility, and
after adding a value to it for the ability to exercise early.

Note in the canonical model’s pricing error scat-

terplot in Exhibit 8 that the model does not have the
tendency to underprice the in-the-money calls. That is,
the errors do not have an obvious upward trend, and are
centered closer to zero for the low values of X/F.11 

Overall, the mean absolute value of the pricing
errors (MAE) of the Black model is 11.9 cents, while the
canonical model MAE is only 7.7 cents.12 So both mod-
els seem to work well on the randomly sampled days
during the out-of-sample period examined (August
1996-January 1997), with the canonical model outper-
forming the Black model on that basis. 

We also compute the mean absolute percentage
error (MAPE) in the time value of both models, i.e., the
average value of the absolute percentage error (absolute
pricing error of each option divided by the time value
above the intrinsic value). This is a more stringent per-
formance statistic, because it looks at the pricing error
relative to the part of the option value that is hard to
price (the time value above the intrinsic value). Both
models have a time value MAPE of $13.6%. 

VI. OTHER MODELING ISSUES

A possible criticism of the Black model applied to
fixed-income futures options is the assumption that the
short interest rate is a known constant through the expi-
ration date, while longer-term rates (and their associat-
ed note and bond futures prices) are assumed to be
uncertain. As noted by Whaley [1986], short- and long-
term interest rate volatility are to some degree separable.
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E X H I B I T 7
Historical Volatility-Based Black Model 
Pricing Errors

E X H I B I T 8
Canonical Model Pricing Errors
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In light of this, one should consider the fact that the
most popular alternatives to the Black model (such as
the numerous variants of the Ho and Lee [1986]
model) each depend entirely on an ad hoc dynamic
assumption about the movements of the short interest
rate, which in turn severely constrains their comove-
ments with the long-term interest rates most relevant
for bond futures price movements.

While two-factor models provide a potential
way around this, the parametric forms (such as
Longstaff and Schwartz [1992]) still make it difficult to
incorporate all the information in the historical series
of bond futures prices.

Although there is no evidence that stochastic
short-term rates are the reason for the Black model’s
empirical difficulties, the canonical model could be mod-
ified to incorporate stochastic short-term rates. Because
the canonical model seems to perform adequately in the
tests reported here, this modification was not made.  

Another possible criticism of both the Black and
the canonical model for pricing the CBOT note and
bond futures options is the absence of any upward
adjustment for the value of early exercise opportunities.
Ramaswamy and Sundaresan [1985] suggest that the
value added by the possibility of early exercise is “rather
small, especially for options that are at-the-money” (p.
1327), and numerical simulations by Whaley [1986]
indicate a significant effect only on the price of deep-
in-the-money calls. Consistent with this, the seminal
study by Cakici, Chatterjee, and Wolf [1993] on
CBOT note and bond futures options prices makes the
upward adjustment for early exercise, by adding the
Barone-Adesi and Whaley [1987] calculated early exer-
cise values to the Black model values, but finds that the
results are “similar to” the model without this addition.
It thus does not appear that failure to incorporate early
exercise values explains the difference in the Black and
canonical model pricing performances.

Finally, studies of actual early exercise of these
options show that the vast majority occur with less than
one month to expiration (Overdahl [1988]), and that
some market participants have sometimes failed to
exercise these options when it was rational to do so —
even at expiration (see Gay, Kolb, and Yung [1989]).
Considering all this, to be on the safe side, we made
our pricing comparisons on options with more than
one month to expiration that are not either too deeply
in or out of the money.

Another possible criticism is the absence of any

explicit adjustments to the estimated futures price distri-
butions caused by the embedded options in the delivery
process for the underlying bond futures contract. As dis-
cussed in Koenigsberg [1991], the seller has four options:
what bond to deliver, when to deliver in the delivery
month, and the “last-week” and “afternoon” wild card
options. Ritchken and Sankarasubramanian [1995]
report that the choice of delivery bond “is viewed as
having the greatest effect.” Their simulations suggest that
this option’s effect reduces the bond futures price by
“about 2 percent” [1995, p. 275], with a maximum
effect of 3.5% calculated by Koenigsberg [1991] using a
different model.

Thus, it does not appear that the volatility skew’s
persistence over appreciable periods of time could be
caused by the failure to explicitly adjust for these delivery
options, although users concerned with this could modi-
fy their assessment of the futures price distribution to
incorporate their views about the impact of these events.

VII. CONCLUSIONS AND 
FUTURE DIRECTIONS

The most comprehensive empirical valuation
study of CBOT bond futures options discovered that the
popular Black model of futures options is subject to a
pattern of moneyness bias that is qualitatively similar to
the extensively documented moneyness bias of the
(Black-Scholes) model of stock index options.

To further investigate whether these moneyness
biases can be attributed to misspecification of the
model for the underlying price distribution, we modi-
fy the canonical model of Stutzer [1996] to value
futures options, and apply it to the CBOT bond futures
options. The model does not require assumptions
implying a specific parametric form for the underlying
futures price distribution.

Viewing canonical model values as predictors of
option market prices, i.e., as predictors of implied
volatilities, the model predicts that in the typical range of
futures prices, short-term in-the-money calls should
have higher implied volatilities than other calls, and that
the implied volatilities will be higher when the current
futures price is atypically high, i.e., when long-term
bond rates are atypically high. These predictions are
consistent with existing empirical evidence. 

The out-of-sample market pricing performance
of options with one to four months to expiration is
examined during the last half of 1996, a period of rela-
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tively high futures prices (relatively low bond yields).
Corroborating the earlier empirical evidence, we still
observe a tendency for the Black model to underprice
in-the-money calls relative to others; that is, the
implied volatilities are inversely related to the exercise
price. The canonical model does not exhibit this mis-
pricing pattern during the testing period.

The canonical model outperforms the historical
volatility-based Black model during this period, with a
mean absolute pricing error of 7.7 cents versus 11.9
cents for the Black model. Both models, however, have
the same mean absolute percentage errors in the time
value of the options. 

The results would seem to warrant further
development in several directions. Of course, our
unconstrained model could be applied to other interest
rate, equity, or commodity futures options. In addition,
one could further constrain the model, along the lines
suggested in Stutzer [1996], in order to improve its
pricing performance, especially for options with longer
terms to expiration. Finally, it should be possible to
incorporate the additional complexity of a stochastic
short-term rate, or to assign a value for the possibility
of early exercise by using the difference between anoth-
er model value (say, Black) and the higher value com-
puted from its modification for early exercise (say, the
Barone-Adesi and Whaley [1987] modification), in
applications where these are believed to be major
sources of pricing error. This research was supported by
a grant from the Chicago Board of Trade Educational
Research Foundation.

ENDNOTES
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1Cakici, Chatterjee, and Wolf also use the Barone-
Adesi and Whaley [1987] method to incorporate the addi-
tional value of the early exercise feature. They conclude that
“results for the European pricing model are similar to the
American model” [1993, p. 7]. Hence, failure to incorporate
early exercise here is not a serious problem.

2We use histograms to form our estimates of the
actual distribution at option expiration, but users could sub-
stitute their own assessments if desired.

3This is the simplest imaginable form of kernel
smoothing, using a uniform kernel with a bandwidth of
$8. The $8 bandwidth was found to achieve smaller pric-
ing errors than smaller bandwidths, yet still be computa-
tionally tractable.

4If the underlying asset price is a spot rather than a
forward or futures, one would also have to discount the T-
ahead prices.

5Other uses of the maximum entropy principle in
option pricing are in Stutzer [1994], Hawkins, Rubinstein,
and Daniell [1996], and Buchen and Kelly [1996], and some
related uses in asset pricing are developed in Stutzer [1995]
and in Kitamura and Stutzer [1997].

6The canonical option model was named in order to
honor Gibbs [1902], who was America’s first internationally
renowned scientist.

7Different values of the discount rate r will not change
the nature of our conclusions.

8Because the bond futures and bond futures options
markets close at the same time, there is less chance of non-
simultaneous quotes changing the nature of conclusions con-
cerning the relative pricing performance of the two models. 

9On January 21, 1997, there were two options with
different expiration dates that met these criteria.

10One can easily modify the canonical risk-neutral
probabilities to reflect any actual option market prices, analo-
gous to the use of an option-implied volatility parameter. One
adds an additional constraint to (2) requiring that each chosen
option market price equal the discounted risk-neutral expect-
ed value of that option’s payoff at expiration. Because the
canonical model performs well with just the single (martin-
gale) constraint in (2), we did not see any need to use option
market prices in this fashion. After all, if the goal were just to
predict some option prices from knowledge of other option
prices, completely atheoretical non-parametric methods, like
the neural network method in Hutchinson, Lo, and Poggio
[1994] might work better than any theory predicated on the
absence of arbitrage opportunities involving trading in the
underlying and riskless assets.

11The three outliers in Exhibit 8 all occur on October
8, 1996, and are for options with twenty-six days to expiration.

12The Black model’s performance was adversely influ-
enced by outliers occurring on three days in 1996 —August
5, August 9, and August 19 — all for options with times to
expiration of three months or more.
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